Structured Prediction, Dual Extragradient and Bregman Projections
نویسندگان
چکیده
We present a simple and scalable algorithm for maximum-margin estimation of structured output models, including an important class of Markov networks and combinatorial models. We formulate the estimation problem as a convex-concave saddle-point problem that allows us to use simple projection methods based on the dual extragradient algorithm (Nesterov, 2003). The projection step can be solved using dynamic programming or combinatorial algorithms for min-cost convex flow, depending on the structure of the problem. We show that this approach provides a memory-efficient alternative to formulations based on reductions to a quadratic program (QP). We analyze the convergence of the method and present experiments on two very different structured prediction tasks: 3D image segmentation and word alignment, illustrating the favorable scaling properties of our algorithm.
منابع مشابه
An accelerated non-Euclidean hybrid proximal extragradient-type algorithm for convex-concave saddle-point problems
This paper describes an accelerated HPE-type method based on general Bregman distances for solving monotone saddle-point (SP) problems. The algorithm is a special instance of a non-Euclidean hybrid proximal extragradient framework introduced by Svaiter and Solodov [28] where the prox sub-inclusions are solved using an accelerated gradient method. It generalizes the accelerated HPE algorithm pre...
متن کاملFaster Rates for training Max-Margin Markov Networks
Structured output prediction is an important machine learning problem both in theory and practice, and the max-margin Markov network (MN) is an effective approach. All state-of-the-art algorithms for optimizing MN objectives take at least O(1/ ) number of iterations to find an accurate solution. Recent results in structured optimization suggest that faster rates are possible by exploiting the s...
متن کاملA scaled Bregman theorem with applications
Bregman divergences play a central role in the design and analysis of a range of machine learning algorithms through a handful of popular theorems. We present a new theorem which shows that “Bregman distortions” (employing a potentially non-convex generator) may be exactly re-written as a scaled Bregman divergence computed over transformed data. This property can be viewed from the standpoints ...
متن کاملEfficient Bregman Projections onto the Permutahedron and Related Polytopes
The problem of projecting onto the permutahedron PH(c)—the convex hull of all permutations of a fixed vector c—under a uniformly separable Bregman divergence is shown to be reducible to the Isotonic Optimization problem. This allows us to employ known fast algorithms to improve on several recent results on Bregman projections onto permutahedra. In addition, we present a new algorithm MergeAndPo...
متن کاملStrong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces
In this paper, we combine the subgradient extragradient method with the Halpern method for finding a solution of a variational inequality involving a monotone Lipschitz mapping in Banach spaces. By using the generalized projection operator and the Lyapunov functional introduced by Alber, we prove a strong convergence theorem. We also consider the problem of finding a common element of the set o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 7 شماره
صفحات -
تاریخ انتشار 2006